

To Study Load Line of BJT and Biasing with Digital Meters

Model : SC-106DM

SINCOM SC-106DM To Study Load Line of BJT with Digital Meters is a self contained remarkable simply designed trainer for the purpose to study setting up of a BJT DC load line and its effect on signal amplification with and without Emitter Resistor and determine the various operational parameters with a wide range of components bank in a simple experimental way. The Trainer is equipped with on board Digital voltmeter & Digital Ammeter.

Features

- ❖ User friendly Design
- ❖ One Silicon NPN BJT of TO-92 package on board
- ❖ NPN BJT with higher β
- ❖ Combinational Resistor Bank at Base
- ❖ Resistor Bank at Emitter
- ❖ Variable Resistive Collector Load
- ❖ In-Built Fixed regulated DC Power Supply
- ❖ Easy to select the different biasing resistors
- ❖ Facility to change the Operating Point Q
- ❖ Facility to study the AF signal amplification and frequency response
- ❖ Very Easy for Operation
- ❖ Multi color Circuit Diagram is printed on the front panel of the board
- ❖ Enclosed in an attractive, light weight, High Quality, Poly Coated Imported Pine Wooden cabinet
- ❖ On Board 3^{1/2} Digit Digital Voltmeter and Ammeter
- ❖ Interconnections by 2mm high quality banana sockets and pins
- ❖ Maximum Test points to explore all the corners of experiment
- ❖ 1 Year Warranty

An ISO 9001:2015 Co.

Technical Specifications

▪ AC Mains Power Supply	: 230V \pm 10%, 50Hz
▪ DC Power Supply	: IC Regulated Fixed +12V/500mA
▪ Biasing Method	: Voltage Divider/Self Bias with & without Emitter Feedback
▪ Transistor Type and Package	: BJT-Silicon-NPN, TO-92 Package
▪ Transistor Used	: One SL/CL100
▪ Transistor β	: @170-180
▪ Transistor Configuration	: CE mode
▪ BJT Junction Voltage	: 0.7V
▪ Max. Collector Emitter Voltage	: 12 VDC
▪ Base Resistor Bank	: Four Base Resistors includes Two Fixed and Two Variable
▪ Fixed Base Resistor Bank	: Two Fixed-MFR 15K Ω & 3.9K Ω , \pm 5%
▪ Variable Base Resistor Bank	: Two Variable 100K Ω Potentiometers
▪ Collector Resistor	: Fixed-MFR 3.3K Ω , \pm 5%
▪ Output Load	: Variable 10K Ω Resistive Load
▪ Emitter Resistor Bank	: Two- MFR 2.2K Ω and 0 Ω , \pm 5%
▪ Total Digital Meters	: 04 (2 Voltmeter and 2 Ammeter)
▪ Digital Voltmeters	: 0-2V and 0-20V (Two Nos.)
▪ Digital Ammeter	: 0-2mA and 0-20mA (Two Nos.)
▪ Weight	: 2.0 kg (approx)
▪ Dimensions (mm)	: L 220 x W 270 x H 110
▪ Interconnections	: 2mm Banana sockets
▪ Operating Temperature	: 0-50 $^{\circ}$ C, 80% RH

Learning Scope

- To Determine the various currents & voltages $I_B, I_C, V_B, V_C, V_{CE}, V_E$ and Stability factor.
- To Plot DC load line & observe change w.r.t. change in Base resistor & Emitter feedback resistor bank.
- To study the effect on AF Output for the applied AF input by the change of load line.

Other Instruments Required : Oscilloscope, Function Generator.

Accessories Included : Set of Patch Cord and Details Instruction Manual