

# UJT,JFET and MOSFET Characteristics with Digital Meters

## Model : SA-122DM

**SINCOM SA-122DM UJT,JFET & MOSFET Characteristics** with Digital meters is comprehensive remarkable trainer useful to study V-I characteristics of UJT, JFET and MOSFET. The UJT, JFET and power MOSFET are widely used in various electronics circuits for switching, timing and amplification processes. The trainer is simply designed to plot its characteristics and determine the various operational parameters in a simple experimental way. The trainer is equipped with on board Digital voltmeter and Digital Ammeter.

## Features

- ❖ TO-18 UJT, TO-72 JFET and TO-2220AB MOSFET Transistor package
- ❖ Three separate modules of UJT, JFET and MOSFET Characteristics
- ❖ Silicon PN Uni-junction UJT, N-Channel JFET and N-Channel Enhancement power MOSFET are provided
- ❖ JFET is Low Power, High Frequency Device
- ❖ MOSFET is low ON-State Resistance, Fast Switching and low thermal Resistance device
- ❖ UJT -Individual control of Emitter and Base-2 Input DC voltages of
- ❖ JFET and MOSFET-Individual control of Gate and Drain Input DC voltages
- ❖ Current controlling resistors for UJT in Emitter, Base-1 and Base-2
- ❖ Current controlling resistors for JFET and MOSFET in Gate and Drain
- ❖ In-Built Variable regulated DC Power Supply
- ❖ Multi color Circuit Diagram printed on the front of the white board
- ❖ Enclosed in an attractive, light weight, High Quality, Poly Coated Imported Pine Wooden cabinet
- ❖ On Board 3<sup>1/2</sup> Digit Digital Voltmeter and Ammeter
- ❖ User friendly Designed
- ❖ Very Easy for Operation
- ❖ Interconnections by 2mm high quality banana sockets and pins
- ❖ Maximum Test points to explore all the corners of experiment
- ❖ 1 Year Warranty

## Technical Specifications

|                                               |                                            |
|-----------------------------------------------|--------------------------------------------|
| ▪ AC Mains Power Supply                       | : 230V $\pm$ 10%, 50Hz                     |
| ▪ For UJT Characteristics                     |                                            |
| • DC Power Supply                             | : Two Nos. Variable +12V/500mA             |
| • Emitter-Base1 $V_{EB}$                      | : IC Regulated variable 0V to +12V/500mA   |
| • Base2-Base1 $V_{BB}$                        | : IC Regulated variable 0V to +12V/500mA   |
| • UJT Type                                    | : TO-18 Silicon PN Uni-Junction Transistor |
| • UJT Used                                    | : 2N2646                                   |
| • Emitter Current Controlling Resistor        | : MFR 1K $\Omega$ , $\pm$ 5%               |
| • Base2 Current Controlling Resistor          | : MFR 10K $\Omega$ , $\pm$ 5%              |
| • Base1 Current Controlling Resistor          | : MFR 470 $\Omega$ , $\pm$ 5%              |
| • Intrinsic Standoff Ration $\eta$            | : 0.56 -0.75 ( $V_{B2B1}$ =10V)            |
| • Max. Two bases Voltage $V_{B2B1}$ : 35V     |                                            |
| • Max. Emitter Reverse Voltage $V_{B2E}$      | : 30V                                      |
| • Max. RMS Emitter Current (I <sub>e</sub> )  | : 50mA                                     |
| • Max. Peak Emitter Current (I <sub>e</sub> ) | : 2A                                       |
| • Max. Power Dissipation                      | : 300mW                                    |

- Operating Junction Temperature : -65 to +150<sup>0</sup>C

**For JFET Characteristics**

- DC Power Supply : Two Nos. Variable ±12V/500mA
- Gate-Source Voltage  $V_{GS}$  : IC Regulated variable 0V to -12V/500mA
- Drain-Source Voltage  $V_{DS}$  : IC Regulated variable 0V to +12V/500mA
- JFET Type : TO-72,BFW10, N Channel
- Gate Current Controlling Resistor : MFR 100KΩ, ±5%
- Drain Current Controlling Resistor : MFR 10KΩ, ±5%
- Max. Drain-Source Voltage  $V_{DS}$  : 30V DC
- Max. Drain-Gate Voltage  $V_{DG}$  : 30V DC
- Reverse Gate-Source Voltage  $V_{GSR}$  : -30V DC
- Forward Gate Current  $I_{GF}$  : 10mA DC
- Operating Junction Temperature : -65 to +150<sup>0</sup>C

**For MOSFET Characteristics**

- DC Power Supply : Two Nos. Variable +12V/500mA
- Gate-Source Voltage  $V_{GS}$  : IC Regulated variable 0V to +12V/500mA
- Drain-Source Voltage  $V_{DS}$  : IC Regulated variable 0V to +12V/500mA
- MOSFET Type : TO-220,IRF540/840, N Channel Enhancement type
- Gate Current Controlling Resistor : MFR 10KΩ, ±5%
- Drain Current Controlling Resistor : MFR 10KΩ, ±5%
- Max. Drain-Source Voltage  $V_{DS}$  : 100V DC
- Max. Gate-Source Voltage  $V_{GS}$  : 20V DC
- Max. Gate Threshold Voltage  $V_{GSth}$  : 4V DC
- Max. Drain Current : 30A
- Drain Source Resistance ( $R_{DS}$ ) : 0.85 Ohms
- Operating Junction Temperature : -65 to +150<sup>0</sup>C

- Total Digital Meters : 03 (2 Voltmeter and 1 Ammeter)
- Digital Voltmeters : 0-20V (Two Nos.)
- Digital Ammeter : 0-20mA (One No.)
- Meter Display : Red Color, 3<sup>1/2</sup> Digit , LED Display
- Weight : 3.0 kg (approx)
- Dimensions (mm) : L 270 x W 390 x H 130
- Interconnections : 2mm Banana sockets
- Operating Temperature : 0-50<sup>0</sup>C, 80% RH

## Learning Scope

- To study the operation of UJT.
- To Study the V-I characteristics of UJT for the Different Values of applied  $V_{BB}$  Voltage.
- To Determine Peak-Point ( $V_p$ ) & Valley-Point ( $V_v$ ) Voltage of UJT.
- To Study the Drain characteristics of JFET.
- To Study the Transfer characteristics of JFET.
- To Determine  $V_{GS}$  Cut-off Voltage of given JFET.
- To Study the Drain characteristics of N-channel Enhancement type MOSFET
- To Study the Transfer characteristics of N-channel Enhancement type MOSFET
- To Determine  $V_{GS}$  Threshold Voltage of given MOSFET.

## Other Instruments Required : Nil

**Accessories Included :** Set of Patch Cord and Details Instruction Manual.

Office : 8, Shantiniketan Colony, Pratap Nagar, Nagpur- 440 022 (MS) INDIA, Phone: 91-712-2287174, 2293303

Mobile : 09372153411, E-mail: info@sincomindia.com, sincom22@hotmail.com, Web: www.sincomindia.com